Loi de probabilité

Variables aléatoires discrètes finies - Mathématiques STI2D/STL

Exercice 1 : Déterminer les valeurs prises et la loi de probabilité à partir d'un énoncé (un seul tirage)

On tire une boule d'une urne contenant 8 boules rouges, 11 boules bleues et 3 boules vertes. On gagne 3 € si la boule est rouge, on perd 8 € si la boule est bleue et sinon on perd 9 €.
On appelle \( G \) la variable aléatoire égale au gain algébrique en euro obtenu en fin de partie.

Donner les valeurs prises par la variable aléatoire \( G \).
(On donnera la liste séparée par des point-virgules. S'il n'y en a aucun, écrire "Aucun" )
Donner la loi de probabilité de \( G \) en complétant le tableaux suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"header_left": ["\\(g_i\\)", "\\(P\\left(G=g_i\\right)\\)"], "data": [["?", "?", "?"], ["?", "?", "?"]]}

Exercice 2 : Déterminer les valeurs prises et la loi de probabilité à partir d'un énoncé (deux tirages avec remise)

On tire successivement et avec remise deux boules d'une urne contenant 11 boules rouges, 6 boules bleues et 5 boules vertes. À chaque tirage, on gagne 5 € si la boule est rouge, on perd 6 € si la boule est bleue, et on gagne 9 € dans les autres cas.
On appelle \( G \) la variable aléatoire égale au gain algébrique en euro obtenu en fin de partie.


Donner les valeurs prises par la variable aléatoire \( G \).
On donnera la liste séparée par des point-virgules. S'il n'y en a aucun, écrire Aucun.
Donner la loi de probabilité de \( G \) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"data": [["?", "?", "?", "?", "?", "?"], ["?", "?", "?", "?", "?", "?"]], "header_left": ["\\( g_i \\)", "\\( P\\left(G=g_i\\right) \\)"]}

Exercice 3 : Déterminer une loi de probabilité à partir d'un énoncé (trois tirages sans remise)

Un sac contient treize cubes : deux gros cubes bleus, un gros cube gris, trois petits cubes bleus, trois gros cubes verts et quatre petits cubes gris. Un enfant prend trois cubes simultanément dans le sac.

On note :
  • \(A\) : l'évènement d'obtenir trois cubes de couleurs différentes.
  • \(B\) : l'évènement d'obtenir au plus un petit cube.
Calculer la probabilité de \(A\).
On arrondira la réponse à \(10^{-2}\).
Calculer la probabilité de \(B\).
On arrondira la réponse à \(10^{-2}\).

Soit \(X\) la variable aléatoire donnant le nombre de gros cube gris tirés par l'enfant.

Donner la loi de probabilité de \(X\) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant et on arrondira les réponses à \(10^{-2}\).
{"header_left": ["\\(x_i\\)", "\\(P(X=x_i)\\)"], "data": [["?", "?"], ["?", "?"]]}
Calculer l'espérance de \(X\).
On utilisera les valeurs exactes pour faire le calcul, qu'on arrondira à \(10^{-2}\) au dernier moment.

Exercice 4 : Déterminer les valeurs prises et la loi de probabilité à partir d'un énoncé (deux tirages sans remise)

Un sac contient 12 jetons indiscernables au toucher : 4 jetons blancs numérotés de 1 à 4 et 8 jetons noirs numérotés de 1 à 8.
On tire simultanément deux jetons de ce sac.

On note \( A \) l'événement « obtenir deux jetons blancs ».
On note \( B \) l'événement « obtenir deux jetons portant des numéros impairs ».

Quelle est la probabilité de l'événement \( A \) ?
Quelle est la probabilité de l'événement \( B \) ?
Calculer \( P(A \cap B) \).
Les événements \( A \) et \( B \) sont-ils indépendants ?

Soit \( X \) la variable aléatoire prenant pour valeur le nombre de jetons blancs obtenus lors de ce tirage simultané.
Soit \( P \), la loi de probabilité de \( X \).

Calculer \( P(X = 0) \).
Calculer \( P(X = 1) \).
Calculer \( P(X = 2) \).
Calculer l'espérance mathématique de \( X \).

Exercice 5 : Retrouver une loi aléatoire à partir d'une simulation Python

La fonction simul définie en Python simule une loi de probabilité \( X \), en utilisant une fonction randint qui prend deux entiers \( a\text{, }b \) en paramètres et renvoie un entier aléatoire \( r \) tel que \( a \le r \le b \) .

from random import randint
def simul():
     alea = randint(1, 60)
     if alea <= 22:
          return -3
     if alea >= 26:
          return 1
     return 4
Donner la loi de probabilité de \( X \) en complétant le tableau suivant.
On donnera les valeurs prises par la variable aléatoire dans l'ordre croissant.
{"data": [["?", "?", "?"], ["?", "?", "?"]], "header_left": ["\\( x_i \\)", "\\( P\\left(X=x_i\\right) \\)"]}
Quelle est l'espérance de cette loi de probabilité ?
On donnera la réponse sous la forme d'un entier ou d'une fraction simplifiée.
Kwyk vous donne accès à plus de 8 000 exercices auto-corrigés en Mathématiques.
Nos exercices sont conformes aux programmes de l'Éducation Nationale de la 6e à la Terminale. Grâce à Kwyk, les élèves s'entraînent sur du calcul mental, des exercices d'arithmétique et de géométrie, des problèmes et des exercices d'application, des exercices d'algorithmique et de python, des annales du brevet des collèges et du baccalauréat. Nos exercices sont proposés sous forme de réponse libre et/ou de QCM.

Afin d'assurer un entraînement efficace et pertinent aux élèves, chaque exercice est généré avec des valeurs aléatoires. Les élèves peuvent s'entraîner grâce aux devoirs donnés sur Kwyk par leurs professeurs et aux devoirs générés par notre outil utilisant l'IA mais aussi grâce aux différents modules de travail en autonomie mis à disposition sur leur espace personnel. Pour les niveaux du collège, les élèves ont également accès à des cours constitués d'une partie théorique et d'une partie pratique.
Avec Kwyk, vous mettez toutes les chances du côté des élèves pour que les différents théorèmes, propriétés et définitions n'aient plus aucun secret pour eux.

En 2024, plus de 40 000 000 d'exercices ont été réalisés sur Kwyk en Mathématiques.
Exercices de Mathématiques : préparer les examens
Brevet des collèges | Baccalauréat
S'entraîner dans d'autres matières
Français | Physique-Chimie
False